Latent semantic Indexing


Latent Semantic Indexing (LSI) is an indexing and retrieval method that uses a mathematical technique called Singular Value Decomposition (SVD) to identify patterns in the relationships between the terms and concepts contained in an unstructured collection of text. LSI is based on the principle that words that are used in the same contexts tend to have similar meanings. A key feature of LSI is its ability to extract the conceptual content of a body of text by establishing associations between those terms that occur in similar contexts.[1]

Contents

Called Latent Semantic Indexing because of its ability to correlate semantically related terms that are latent in a collection of text, it was first applied to text at Bell Laboratories in the late 1980s. The method, also called Latent Semantic Analysis (LSA), uncovers the underlying latent semantic structure in the usage of words in a body of text and how it can be used to extract the meaning of the text in response to user queries, commonly referred to as concept searches. Queries, or concept searches, against a set of documents that have undergone LSI will return results that are conceptually similar in meaning to the search criteria even if the results don’t share a specific word or words with the search criteria.

LSI overcomes two of the most severe constraints of Boolean keyword queries: multiple words that have similar meanings (synonymy) and words that have more than one meaning (polysemy). Synonymy and polysemy are often the cause of mismatches in the vocabulary used by the authors of documents and the users of information retrieval systems.[2] As a result, Boolean keyword queries often return irrelevant results and miss information that is relevant.

LSI is also used to perform automated document categorization. In fact, several experiments have demonstrated that there are a number of correlations between the way LSI and humans process and categorize text.[3] Document categorization is the assignment of documents to one or more predefined categories based on their similarity to the conceptual content of the categories.[4] LSI uses example documents to establish the conceptual basis for each category. During categorization processing, the concepts contained in the documents being categorized are compared to the concepts contained in the example items, and a category (or categories) is assigned to the documents based on the similarities between the concepts they contain and the concepts that are contained in the example documents.

Dynamic clustering based on the conceptual content of documents can also be accomplished using LSI. Clustering is a way to group documents based on their conceptual similarity to each other without using example documents to establish the conceptual basis for each cluster. This is very useful when dealing with an unknown collection of unstructured text.

Because it uses a strictly mathematical approach, LSI is inherently independent of language. This enables LSI to elicit the semantic content of information written in any language without requiring the use of auxiliary structures, such as dictionaries and thesauri. LSI can also perform cross-linguistic concept searching and example-based categorization. For example, queries can be made in one language, such as English, and conceptually similar results will be returned even if they are composed of an entirely different language or of multiple languages.

LSI is not restricted to working only with words. It can also process arbitrary character strings. Any object that can be expressed as text can be represented in an LSI vector space.[5] For example, tests with MEDLINE® abstracts have shown that LSI is able to effectively classify genes based on conceptual modeling of the biological information contained in the titles and abstracts of the MEDLINE citations.[6]

LSI automatically adapts to new and changing terminology, and it has been shown to be very tolerant of noise (i.e., misspelled words, typographical errors, unreadable characters, etc.).[7] This is especially important for applications using text derived from Optical Character Recognition (OCR) and speech-to-text conversion. LSI also deals effectively with sparse, ambiguous, and contradictory data.

Text does not need to be in sentence form for LSI to be effective. It can work with lists, free-form notes, email, Web-based content, etc. As long as a collection of text contains multiple terms, LSI can be used to identify patterns in the relationships between the important terms and concepts contained in the text.

LSI has proven to be a useful solution to a number of conceptual matching problems.[8][9] The technique has been shown to capture key relationship information, including causal, goal-oriented, and taxonomic information.

The Above mentioned article has been choosen from wikipedia and this is for informative purpose only

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s